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1 Introduction

The interpretation of clinical variants is a difficult process. To classify variant effects,

the American College of Medical Genetics and Genomics (ACMG) guidelines[1] pro-

vides categories ranging from ”pathogenic” to ”benign”, with uncertain cases labeled as

”variants of uncertain significance” (VUS), where insufficient evidence exists. The ma-

jority of clinical variants are currently classified as the latter[2]. The ACMG guidelines

assign different evidence strengths to different types of information, such as in silico

predictors or laboratory studies. Unfortunately, while computational predictions are

easily scalable, they are only considered ”supporting” evidence, whereas the stronger

evidence provided by laboratory assays traditionally only exists at small scale.

1.1 MAVE: Multiplex Assays of Variant Effect

To tackle the problem of scaling laboratory assays, a proactive approach called Mul-

tiplexed Assays of Variant Effect (MAVEs)[3] was developed. MAVEs harness high-

throughput sequencing to apply laboratory assays at scale and often also integrate

machine learning methods and clinical expertise. MAVE studies typically include four

main steps: mutagenesis, selection of variants via assay, sequencing, and computational

analysis. A good example for a mutagenesis method is Precision Oligo-Pool based Code

Alteration(POPCode) mutagenesis, which aims to yield a complete spectrum of pos-

sible amino acid changes across the protein [4]. Following mutagenesis, the resulting

variant libraries are subjected to a selection step, enriching or depleting variants based

on their effects on protein functionality. There are many selection schemes that can be

applied in a MAVE, such as functional complementation, Yeast-2-Hybrid (Y2H) assays,

or sorting based on fluorescent reporter activity via FACS (fluorescence-activated cell
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sorting). Sequencing is then used to quantify the enrichment or depletion of variants

as a result of selection. There are different sequencing approaches including Tileseq1

and Barseq2 which can be used in this step. The last step in MAVE is computational

analysis, where pipelines and scripts are employed to analyze the sequencing readout

and calculate the selection advantage for each variant.

Nowadays, MAVEs generate lots of variant effect maps of clinically relevant genes for

clinical research. However, there are some issues related to MAVEs. First, going from

MAVEs to clinical interpretation is not straightforward, since the selection advantage

for each variant in a given assay may not reflect their pathogenicity. For this reason,

including a Log-likelihood Ratio (LLR) approach in the downstream analysis of MAVEs

has been proposed. This approach can transform the fitness scores into a metric of

evidence strength towards or against pathogenicity of variants. Second, computational

analysis pipelines have undergone many iterations of developments. Different versions of

MAVEs may adopt different implementations, leading to varying outcomes. Therefore,

it is important to analyze different versions of MAVEs and evaluate their performance

systematically.

1.2 Goals and Objectives

Based on the above issues with MAVEs, this BCB330 project aims to re-evaluate the

performance of variant effect maps based on different versions of MAVE pipelines with

respect to precision and sensitivity on reliable benchmarks.

1. Re-process the raw data underlying existing variant effect maps with the latest

versions of their respective analysis pipelines.

1https://github.com/rothlab/tileseqMave
2https://github.com/rothlab/pacybara

2

https://github.com/rothlab/tileseqMave
https://github.com/rothlab/pacybara


(a) Inspect the QC outputs for the maps to identify potential quality issues.

2. Compile benchmark sets of variants with known pathogenicity from online databases

and literature for each map.

(a) Explore alternative reference sets of non-disease genes.

3. Compare the predictions made by different versions of variant effect maps using the

benchmark sets and use them to infer evidence strength for clinical interpretation.

(a) Identify disagreeing variant effect outputs, and establish their computational

provenance.

(b) Produce Precision-Recall Curves to evaluate the performance of updated ver-

sion and old version of MAVEs.

(c) Calculate Log-likelihood Ratio transformations and identify the fitness score

intervals that corresponding to different evidence levels towards ”pathogenic”

and ”benign” classifications.

4. Provide recommendations for optimizing the implementation of MAVEs based on

the evaluation result.

2 Methods

2.1 Reprocessing Maps

To re-process the raw data sets using various versions of MAVEs, we use the TileSeqPro

pipeline, which takes the raw sequencing output from a Tileseq MAVE experiment,

applies quality filters and error corrections, calculates fitness scores, and generates

diagnostic Quality-Control plots.
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TileSeqPro improves upon an older “Legacy” TileSeq pipeline that was employed

in the Roth Lab until recently. There are many difference of implementations between

TileSeqPro and the Legacy computational pipelines. Most importantly, the Legacy

pipeline collapsed the equivalent codon changes early into amino acid changes, before

filtering. While this meant that lower quality data could get past the filters, and error

correction could not be performed at nucleotide levels, it had the advantage of boosting

the number of reads supporting each data point. In contrast, TileSeqPro calculates

functional scores for individual codon changes separately, filters out low quality variants

based on a number of different criteria such as the low read count (below a certain

threshold), and finally combined them into amino acid changes. Thus, TileSeqPro

sacrifices data to avoid systematic error, but as a result may potentially suffer from

more noise.

2.2 Evaluation approaches

2.2.1 Precision-Recall Curve

There are multiple methods available to assess classification performance, including the

Precision-Recall Curve (PRC), Receiver-operator characteristic (ROC)[5], Matthew’s

correlation coefficient (MCC)[6], and F-scores[7]. However, when evaluating different

maps, the PRC stands out as the most suitable approach due to its ability to handle

class imbalance, a common occurrence in maps where reference set sizes vary. To

further alleviate potential biases, a prior-balancing approach[8] is used to compensate

for differences in reference set sizes. To compare the predictions made by the old and

updated versions of MAVE, the precision-recall curve (PRC) serves as a straightforward

and informative visualization tool. Precision is defined as the fraction of true positive
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calls out of all positive calls, or in the context of variant effects, the proportion of

correctly predicted pathogenic variants out of all predicted pathogenic variants. On

the other hand, recall represents the fraction of true positive calls out of all actual

cases, or in the context of variant effects, the fraction of variants correctly identified as

pathogenic among all existing pathogenic variants.[9]

Utilizing the PRC offers numerous advantages in evaluating the performance of these

prediction maps. First, since high precision is crucial in the context of clinical decision

based on prediction, we can compare the recall level of these maps under the threshold

of 90% precision: the precision-recall curve provides a numerical values (REC90) de-

scribing this information. Second, an overall assessment can be made by analyzing the

total area under the curve (AUPRC), which provides a summary measurement of the

precision-recall curve.

2.2.2 Compiling Benchmark Sets

To evaluate variant effect maps via Precision-Recall curves, we require adequate ref-

erence sets of know pathogenic and benign benchmark variants. To generate such

reference sets, we use a script that is built into TileseqPro, which offers automated

generation of benchmark sets tailored to specific disease-causing genes, drawing from

reliable sources such as ClinVar[10] and gnomAD[11] controls. Since ClinVar tends to

contain more pathogenic variants than benign, gnomAD is used for supplementing the

benign variants collect at population level. The script provides options that allows

users to define specific criteria, including allele frequency threshold, quality, and trait

of interest. These features allows for the refinement of reference sets, which enhances

their applicability in the downstream analysis, includes drawing precision-recall curve,

and finding transformation functions from fitness scores to the log-likelihood ratio for

5



pathogenicity. At the same time, there exists some limitations when using gnomAD and

ClinVar as reference sources. First, there can be variations in the reliability of ClinVar

submissions, since ClinVar collects submissons of interpretation with varying standards

of provenance, and some submissions might lack detailed evidence. Second, variants in

gnomAD controls can only serve as a proxy-benign set, as they have not been officially

classified. Finally, the validation of maps for non-disease genes will require alternative

approaches, such as comparison against high-quality computational predictors.

2.2.3 Correlation against computational predictors

To compare the performance of TileseqPro and the Legacy Tileseq pipelines from an-

other perspective, we did the moving window correlation analysis between Tileseq scores

versus VARITY[8] scores along amino acid positions. VARITY is a computational

method for pathogenicity prediction, it provides a probability of pathogenicity scores

by harnessing gradiant boosted trees algorithm to weight input training sets, where

more close to 1 for variants that are inferred to be pathogenic, and more close to 0 for

variants that are inferred to be benign.

There are two VARITY models generated by the VARITY framework: VARITY R

and VARITY ER. The VARITY R model included rare ClinVar[10] variants with global

minor allele frequency (MAF) less than 0.5% in its core training/ test set; while VAR-

ITY ER model only included extremely rare ClinVar variants with MAF less than 10−6

in its core set. The score scale of VARITY is completely opposite to which of the fitness

score produced by Tileseq pipelines, therefore, we measured the performance of fitness

scores by comparing their anti-correlation with VARITY scores.
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2.2.4 Log-likelihood Ratio of Pathogenicity

In the context of pathogenicity assessment, the log-likelihood ratio (LLR) for pathogenicity[12]

can be used to evaluate the likelihood of a variant being pathogenic versus benign based

on the data. While we can get the fitness scores of the variants from the maps, these

scores only represent the effect of variants on protein function, and they do not nec-

essarily reflect pathogenicity (i.e. how likely they will cause diseases)[13]. We first

estimate the probability densities across the scores of pathogenic and benign reference

variants, respectively, via kernel density estimation. The log ratio between the density

functions is then used to calculate the LLR of pathogenicity, expressing how much more

likely a variant at a fitness score is to be pathogenic than it is benign[13]. However, this

method is very sensitive to even small differences in metaparameter choice, particularly

kernel bandwidth and requires careful manual supervision.

3 Results

3.1 SUMO1

We first re-calculated the map for SUMO1, one of the first variant effect maps created

in the Roth Lab[4].

3.1.1 Observations from QC results

Examining the distributions of synonymous and nonsense variant enrichment ratios

(log(ϕ)) relative to marginal frequency (see supplemental Fig. 1) reveals an acceptable

separation between the two at a frequency of 10−4. Given the sequencing depth of

1.5M reads per sample, this suggests an ideal cutoff of 150 reads. After setting filters

accordingly, approximately one in three variants were filtered out by the frequency filter
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and bottleneck filters.

The library shows an extrapolated average number of 3.09 amino acid changes per

clone (see supplemental Fig. 2) Accordingly, the overall coverage appears decent, de-

spite a small band with reduced coverage near amino acid position 28.

After filter application, there is a clear separation between the enrichment values

of the nonsense and synonymous variants (Fig 1), indicating a reliable selection assay.

The missense variants enrichment values show a bimodal distribution, two modes are

located at around -1.474 and -0.3, which are slightly smaller than the nonsense and

synonymous modes, which are around -1.212 and -0.025 respectively. In the case of

the upper mode, this could indicate that most non-syononymous SUMO1 variants have

at least a small fitness effect. For the lower mode however, it is unlikely that many

variants are more deleterious than nonsense, so the shift may instead be an artifact of

the harsher filtering approach.

Figure 1: The enrichment ratio distributions of SUMO1 shows the overall distribution of mis-
sense(grey), synonymous(green), and nonsense(red) variants’ enrichment values in region 1 of SUMO1
gene.
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3.1.2 Comparison between TileSeqPro and the Legacy pipeline

A comparison of the maps created by TileSeqPro and the Legacy pipeline as visualized

via Mavevis[14] is shown in Figure 2. The first twenty amino acid are insensitive to

missense mutaions in both version of variant effect maps as expected, since this region

of SUMO1 is intrinsically disordered[15]. The Legacy version of the map shows more

available amino acid changes compared to our new version, especially near amino acid

position 28, due to differences in filtering.

(a) heatmap for SUMO1 2023 scores generated by Mavevis

(b) heatmap for SUMO1 2019 scores generated by Mavevis

Figure 2: A comparison of new and old version of SUMO1 heatmaps. The x-axis represents the amino
acid position in protein, and the y-axis includes all possible amino acid changes. Colors used in the
heatmap stand for the fitness score, where blue describes the variants which are as deleterious as full
deletion; white represents synonymous-like variants, red stands for increased fitness than the wildtype
residue at the given position; and yellow represents the wildtype amino acid.[14]

Missense and synonymous mutations, were assigned larger estimates of standard

error by TileseqPro compared to Legacy (see supplemental Fig. 3). The reason for this

change might be due to the introduction of bootstrapping and more pessimistic error

regularization methods.
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Overall, the correlation between the fitness scores produced by the two pipelines

is high with Spearman’s ρ = 0.95 (see supplemental Fig. 4). Interestingly, a moving

window analysis of the correlation also indicates slightly less agreement between two in

the N-terminal disordered region.

3.1.3 Moving Window Correlation between Fitness Scores and VARITY Scores

Since SUMO1 is not a disease gene, no reference set for precision-recall analysis in

terms of pathogenicity exists. As an alternative evaluation approach, we analysed the

correlation of fitness scores with the computational predictor VARITY[8]. As expected,

there is substantial anti-correlation between the VARITY probability of pathogenicity

and fitness scores (they are scaled oppositely). Disregarding the disordered region (the

first 20 amino acids), from position 25 to 70, the Legacy fitness scores are more anti-

correlated with VARITY R and VARITY ER scores; whereas from position 70 to the

end, the new fitness scores have better anti-correlation (Fig. 3). The overall value of ρ

in these regions fluctuates around approximately −0.5.

(a) Correlation between VARITY R Scores and

Fitness Scores

(b) Correlation between VARITY ER Scores and

Fitness Scores

Figure 3: Moving window correlation between VARITY Scores and Fitness Scores. Blue line represents
the old scores, while red line represents the updated scores.
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3.1.4 Conclusion

Both version of SUMO1 maps performed similarly in terms of correlation between VAR-

ITY scores. Our updated TileseqPro pipelines used more information on generating the

error estimates, whereas the harsher filtering steps in the TileseqPro pipelines caused

measurement error we revealed in the variant enrichment value distribution. Addition-

ally, amino acid changes with low marginal frequencies were filtered out in the updated

map while they presented in the previous version of SUMO1 map.

3.2 CALM1

We then re-processed the map for CALM1, which was first created by the Roth Lab in

2018 and first updated by 2019[13].

3.2.1 Observations from QC results

The library shows an extrapolated average number of 2 amino acid changes per clone

(see supplemental Fig. 5). The overall coverage appears low, with many low-frequency

variants (white in the figure) or outright missing ones (gray in the figure).

Examining the distribution of synonymous and nonsense variant enrichment ratios

(log(ϕ)) relative to marginal frequency (see supplemental Fig. 6 (a)) reveals that separa-

tion between log(ϕ) improves noticeably at a frequency of 10−3.85. Given the sequencing

depth of 1.4M reads per sample, we chose a minimum read count threshold of 200. After

setting filters accordingly, around two third of variants were filtered out by frequency

filter and bottleneck filters (see supplemental Fig. 6 (b)).

Following these filter settings, there is a clear separation between the enrichment

values of the nonsense and synonymous variants (Fig. 4), with modes located at -1.230

and 0.001 respectively, whereas the missense variants have only one mode near 0.001
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with an extended shoulder towards the low end. This agrees with previous observations

that most missense variants of CALM1 are not very damaging in terms of fitness[4].

Figure 4: The enrichment ratio distributions of CALM1 shows the overall distribution of mis-
sense(grey), synonymous(green), and nonsense(red) variants’ enrichment values in region 1 of CALM1
gene.

A comparison between the maps calculated via TileSeqPro and the Legacy pipeline

is shown in Figure 5. The impact of harsh filtering in the new map is clearly visible,

as almost 2/3 of variants were removed. This updated version CALM1 map could be a

perfect candidate for machine learning imputation.

(a) heatmap for CALM1 2023 scores generated by Mavevis

(b) heatmap for CALM1 2019 scores generated by Mavevis

Figure 5: A comparison of new and old version of CALM1 heatmaps generated by Mavevis.
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3.2.2 Precision-recall Curve and Log-likelihood Ratio of Pathogenicity

Figure 6: Precision-recall Curve for the 2023 and 2019 version of CALM1 maps. The black line
represents the curve for 2023 map, and the red line represents the curve for 2019 map. Reference
sets this PRC is a combined reference of CALM1, CALM2, and CALM3 (three identical copies of
Calmodulin gene) from ClinVar and gnomAD.

Figure 6 shows the precision-recall curve (PRC) for both versions of the CALM1 map.

Our updated TileseqPro version of CALM1 map outperformed the Legacy version, with

area under PRC 0.85 compared to 0.78, and a recall of 55% at 90% precision compared

to 38% for the Legacy map.

The transformations to log-likelihood ratio of pathogenicity for both CALM1 maps

are compared in Figure 7. The overall shape of these LLR curves are similar, despite

some small differences in fitness score ranges where LLR is positive. For the updated

LLR, when the fitness scores range from 0.3 to 0.8, the LLR function is positive, in-

dicates a tendency towards pathogenicity; while in the old version LLR, LLR function

is positive when the fitness scores are between 0.2 and 0.7. We could not infer LLRs

for scores near 0, due to the absence of reference variants in those regions. However

the concentration of negative reference variants in the intermediate fitness range might

be explained by the dominant-negative inheritance pattern for Calmodulin[13]. One

potential problem with the transformation function is the negative LLR spikes at fit-
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ness score above 1, as there is no supporting reference data. The spike is an artifact of

the kernel density estimates and will need to be addressed in future iterations of the

software.

(a) LLR for 2023 CALM1 map (b) LLR for 2019 CALM1 map

Figure 7: The Log-likelihood ratio of pathogenicity for the CALM1 as a function of fitness score.

3.2.3 Comparison between TileSeqPro and the Legacy pipeline

Similar to the standard error of SUMO1 fitness scores, the standard error of CALM1

fitness scores generated by TileseqPro pipelines have larger standard error than the

Legacy version (see supplemental Fig. 7). We also observed that the standard error of

the nonsense variants’ fitness scores is the highest amongst others.

The fitness score from the two pipeline versions agrees with each other with a corre-

lation of ρ = 0.92 (see supplemental Fig. 8). Nonsense variants have lower correlation

(ρ = 0.59), compared to missense and synonymous variants (ρ = 0.91), likely because

nonsense variants have fewer of available amino acid change data and larger standard

error. The moving window correlation graph indicates a good correlation from amino

acid position 25 to the end, while the correlation for the first 20 amino acid are low

because few amino acid changes in that region ”survived” after the harsh filtering.
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3.2.4 Moving Window Correlation between Fitness Scores and VARITY Scores

We analyzed the moving window correlation of VARITY scores and fitness scores (Fig.

8). As expected, there is an anti-correlation between these scores. Surprisingly however,

the trend of the correlation between fitness scores vs. VARITY R and VARITY ER

are not similar. The Anti-correlation between fitness scores and VARITY R are better

than with VARITY ER. Besides, The anti-correlation between TileseqPro score versus

VARITY scores and Legacy scores vs. VARITY scores are similar, despite the region

around the first twenty amino acids.

(a) Correlation between VARITY R Scores and

Fitness Scores

(b) Correlation between VARITY ER Scores and

Fitness Scores

Figure 8: Moving window correlation between VARITY Scores and Fitness Scores. Blue line represents
the old scores, and red line represents the updated scores.

3.2.5 Conclusion

Though we threw out lots of codon changes with low marginal frequencies when re-

calculating the map with TileseqPro, the newer version of CALM1 map performed

better in terms of gaining more precision. There is still a high correlation between both

versions of CALM1 fitness scores, and the anti-correlation between VARITY scores and

both version of fitness scores look similar.

15



3.3 MTHFR

We also re-processed maps for MTHFR[12]. The original maps were measured in two

different genetic backgrounds (WT and A222V) and at four different concentrations of

folinic acid (12 µg/ml (f12AV), 25 µg/ml (f25AV), 100 µg/ml (f100AV) to 200 µg/ml

(f200AV)). Here we completed reprocessing of the four maps in the A222V background.

The MTHFR variant effect maps currently deposited on MaveDB were first calculated

in 2019, and last updated by 2020.

3.3.1 Observations from QC results

The MTHFR map was subdivided into four separate mutagenesis regions, which show

an extrapolated average number of 0.941, 0.769, 0.864, and 0.791 amino acid changes

per clone, respectively (see supplemental Fig. 10). Accordingly, the overall coverage

presented by the coverage heatmap (see supplemental Fig. 9) appears low, with lots of

low-frequency variants, especially in Tiles 10, 18, and 19.

Inspecting the distribution of nonsense and synonymous variant enrichment ratios

(log(ϕ)) relative to marginal frequency thresholds at different folate concentrations (see

supplemental Fig. 11), we observed that the separation between enrichment values

improved at a frequency of 10−4.6. Given the sequencing depth of 2M reads per sample,

we chose a count threshold at 50 corresponding to this observation. After setting

filters using this setting, around half of variants were filtered out by the frequency and

bottleneck filter.

Following the filtering steps, there is a relatively clear separation between the en-

richment values of nonsense and synonymous MTHFR variants (Fig. 9) at four folate

concentrations, with the 200 µg/ml folinate condition showing the best separation. The
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mode of nonsense variants is located around log(ϕ) = −0.8, and the mode for synony-

mous variants is located around -0.03 for region all. However, the modes vary a lot

by regions: log(ϕ) = −0.85 for nonsense variants and log(ϕ) = −0.023 for synonymous

variants in Region 1; log(ϕ) = −1.17 for nonsense variants and log(ϕ) = 0.084 for syn-

onymous variants in Region 2; log(ϕ) = −1.2 for nonsense variants and log(ϕ) = −0.23

for synonymous variants in Region 3; and log(ϕ) = −0.542 and log(ϕ) = −0.04 for non-

sense and synonymous variants in Region 4, respectively. The missense variants have

only one mode near 0, indicating most missense variants of MTHFR have relatively

mild fitness effects.

(a) f12AV (b) f25AV

(c) f100AV (d) f200AV

Figure 9: enrichment value distribution of MTHFR variants in A222V background, separated by
different folate concentrations.

A comparison between the MTHFR variant effect maps calculated by TileseqPro

and the Legacy pipelines is shown in Figure 10 and 11. The comparison is complicated

by the fact that the maps for f12AV, f25AV, and f100AV available on MaveDB were

previously ”flipped and floored”, i.e. any variants with scores above 1 were inverted by

a f(x) = 1
x
operation and scores below zero were set to exactly zero. This is visible
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especially in the serine-rich region and regulatory domain, where the maps calculated

by TileseqPro pipelines show hypercomplementing variants which are not visible in the

MaveDB map.

(a) f12AV

(b) f25AV

(c) f100AV

(d) f200AV

Figure 10: Mavevis heatmaps for MTHFR variants in A222V background calculated by TileseqPro
pipelines, separated by different folate concentrations.

(a) f12AV

(b) f25AV

(c) f100AV

(d) f200AV

Figure 11: Mavevis heatmaps for MTHFR variants in A222V background calculated by Legacy
pipelines, separated by different folate concentrations. Fitness scores for MTHFR with folate con-
centration f12AV, f25AV, and f100AV are flipped and floored
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3.3.2 Precision-recall Curve and Log-likelihood Ratio for Pathogenicity

Comparing the performance of our updated TileseqPro version MTHFR maps and the

Legacy version by the Precision-recall Curve 12, the TileseqPro version outperformed

the Legacy version, with greater area under PRC and better recall at 90% precision.

Inspecting the TileseqPro version PRC, and comparing between MTHFR maps at dif-

ferent folate concentrations, the map at 25 µg/ml (f25AV) performed the best with area

under PRC of 0.93, and a recall of 75% at 90% precision.

(a) 2023 version PRC (b) 2021 version PRC

Figure 12: PRC for 2023 and 2021 version of MTHFR maps in A222V background, compared between
different folate concentrations(map: f12AV, f25AV, f100AV, f200AV) using the manually curated ref-
erence sets from Weile et al.[12]

The transformation to log-likelihood ratio for TileseqPro MTHFR maps at different

folate concentrations are compared in Figure 13. The overall shapes of these LLR curves

are similar despite some minor differences, where LLR is positive when the fitness scores

range from -0.5 to 0.5, indicate a tendency towards pathogenicity. Whereas LLR is

negative when the fitness score is approximately between 0.8 to 1.5. There is still issues

with the transformation function, since in the f200AV map the negative LLR spikes at
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fitness scores above 1.5 with no real reference data.

(a) f12AV (b) f25AV

(c) f100AV (d) f200AV

Figure 13: LLR of pathogenicity of MTHFR variants in A222V background, separated by different
folate concentrations.

3.3.3 Conclusion

The TileseqPro version of MTHFR maps outperformed our Legacy version in terms

of getting more precision in classifying variants. However, the fitness scores calculated

by the Legacy and TileseqPro pipelines need to be compared again after finding the

non-flipped and floored scores.

20



4 Discussion

In this BCB330 Project, we successfully re-processed the variant effect maps for several

genes using the TileseqPro pipelines. We evaluated their performance by inspecting

QC results, comparing fitness scores with the Legacy pipelines, finding the moving

window correlation to computational predictor VARITY, and drawing the PRC. We

also inferred the fitness score ranges that corresponding to ”benign” and ”pathogenic”

by calculating Log-likelihood of pathogenicity.

The TileseqPro and the Legacy pipeline performed similarly in SUMO1 map, but

TileseqPro outperformed the Legacy pipelines in CALM1 map however at the expense of

losing much of its original coverage, since we filtered out a lot more low quality data than

before. To address this problem, machine-learning methods could be applied to impute

those ”missing spots” in the next step. For the MTHFR map in A222V background,

TileseqPro pipelines performed better in getting more precision in prediction, but the

fitness scores calculated by the TileseqPro and Legacy pipelines need to be compared

after re-scaling them.

Other future goals for this project are as follows: First, we will continue to re-

processing more of the existing maps on MaveDB, compare the results with the older

version, and give recommendation on optimizing the pipeline implementations. Sec-

ond, we will try curating benchmark reference sets for disease genes, when there is no

good reference available for them. Third, we will continue to document the results for

the maps that we already re-processed to a GitHub wiki page. Furthermore, we will

also compare the new and old fitness scores of disease genes to other computational

predictors such as ESM1v[16] and PROVEAN[17].
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5 Supplementary Materials

Supplementary Materials can be found on GitHub at Supplementary
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