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References
§ Missing data emerges in various ways in randomized 

controlled trials (RCTs), such as patient withdrawal.

§ Improper handling of missing data may lead to bias and 
reduced precision in estimating treatment effect.

§ There has not been a comprehensive evaluation of the 
relative performance of missing data methods for RCTs.

Background

§ Evaluate the performance of common missing data handling 
approaches under different missing data mechanisms via 
statistical simulations.

§ Provide practical suggestions and recommendations on 
dealing with missingness in RCTs.

Objectives

Methods Figure 1. Simulation results on the bias distribution of treatment effect 
estimators

Results

§ The bias of all methods are comparable.

§ The adjusted analysis yielded less biased result than the 
unadjusted analysis.

§ MNAR: no methods used in this study corrected the bias.
Figure 2. Simulation results on standard errors (n = 200)

§ Unadjusted analysis yielded higher standard 
error than adjusted analysis.

§ RI returned the lowest standard errors under all 
missing mechanisms.

§ MI yielded the largest standard errors under 
MARY and MNAR than other methods.

Conclusion & Outlook

§ RI method returned the highest type I Error.

§ Other approaches achieved close to nominal type I error 
rate of 0.05.

Figure 3. Type I Error lollipop plots

§ under MCAR: Imputation methods are not needed to 
correct bias.

§ under MARX: Imputation methods and complete case 
analysis yielded comparable bias.

§ under MARY: Multiple imputations is not preferred due to 
large standard error. In contrast, weighting methods work 
well.

§ under MNAR: none of the methods worked well without 
knowing the correct missing model!

§ Address the complexity of the MNAR scenario!

§ RCTs with binary outcomes & survival outcomes!

Simulation Settings
§ We used R statistical software to simulate a trial with 

continuous outcomes under a linear regression model:

𝒚 = 𝜷𝟎 + 𝜷𝟏𝒙𝒊𝟏 + 𝜷𝟐𝒙𝒊𝟐 + 𝜷𝟑𝒙𝒊𝟑 + 𝜷𝟒𝒛𝒊 + 𝝐𝒊
§ The random error: 𝜖'~𝑁 0,10

§ The intercept: 𝛽( = 0

§ The coefficients: 𝛽) = 𝛽* = 𝛽+ = 1

§ All x variables correlates with each other with a correlation 
= 0.5

§ The treatment effect: 𝛽, is independent of all x variables

§ Sample size: n = 200, 500

§ We ran 1000 simulations for each trial

Missing Mechanisms 
We simulated trials contain missing data under various 
missing mechanisms:

§ Missing Completely at Random (MCAR): 
10%	 prob. of missing for x variables and 15% for y 
variable.

§ Missing at Random (MAR)

§ MARX: x variables contains missingness, prob. of 
missing is predicted by other covariates.

§ MARY: y variable contains missingness, prob. of 
missing is predicted by all 3 covariates.

§  Missing Not at Random (MNAR): the higher 
probability of missing for y values that are further 
away from it’s mean.

Missing Data Methods & Analysis
We applied common missing data approaches to each 
simulated trial, including:

§ complete-case analysis (CC)

§ Regression Imputation (RI): We imputed missing values 
with the predicted values from a regression model.

§ Multiple Imputations (MI): We imputed multiple 
completed datasets using multiple imputation by chained 
equations and then pools the treatment 
effect estimates from each imputed dataset using the 
Rubin's rule.

§ Inverse Probability Weighting (IPW): We used logistic 
regression and BART to estimate the probability of being 
observed and then estimate the treatment effect using 
a weighted linear regression.

§ We studied both unadjusted (no adjustment of x) & 
adjusted treatment effect under each simulated trial.
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